
/hv/ASA-T_- /o3,,_ _7
NASATechnicalMemorandum103979

NASA-TM-103979 19940028440

Incremental Triangulation
via Edge Swapping and
Local Optimization

N. LynWiltberger

January 1994 _ I

..... _ _

: i '-''-_'' "'_ i _,

: L". :::__':_t-.:- :,:-:,CEi]TER el

It $A
NationalAeronauticsand
SpaceAdministration

L
't NASATechnicalLibrary

NASA Technical Memorandum 103979 3 1176 01408 7242

IncrementalTriangulation
via Edge Swappingand
Local Optimization
N. Lyn Wiltberger, Ames Research Center, Moffett Field, California

Janua_ 1994

_A
NationalAeronauticsand
SpaceAdministration

AmesResearchCenter
MoffettField,California94035-1000

TABLE OF CONTENTS

Page

1 Getting Started .. 1

1.1 Introduction .. 1

1.2 Getting Set up .. 1

1.3 Case Examples .. 4

1.3.1 Case 1: Triangulation of a point cloud .. 4

1.3.2 Case 2: Constrained triangulation of a point cloud with prespecified
bounding curves ... 5

1.3.3 Case 3" Steiner triangulation with prespecified bounding curves 6

1.3.4 Case 4: Solution adaptive triangulation ... 7

1.3.5 Case 5: Steiner triangulation with graph partitioning 10

2 Some Theory ... 15

2.1 Triangulation Methods .. 15

2.1.1 Voronoi Diagram and Delaunay Triangulation 15

2.1.2 Properties of a 2-D Delaunay Triangulation 16

2.1.3 Incremental Insertion Algorithm .. 18

2.1.3.1 Green and Sibson Algorithm - The MaxMin Triangulation 19

2.1.3.2 The MinMax Triangulation .. 21

2.1.4 Steiner Triangulation ... 24

2.1.5 Solution adaptive triangulation ... 26

2.2 Graph Partitioning for Parallel Computing .. 27

2.2.1 Coordinate Bisection Partitioning .. 29

2.2.2 Cuthill-McKee Partitioning ... 30

2.2.3 Spectral Partitioning ... 31

3 File Formats .. 34

3.1 The Generic Format ... 34

3.2 Example Formats ... 35

3.2.1 Case 1: Triangulation of a point cloud ... 35

3.2.2 Case 2: Constrained triangulation of a point cloud with prespecified
bounding curves ... 36

3.2.3 Case 3: Steiner triangulation with prespecified bounding curves 37

3.2.4 Case 4: Solution adaptive triangulation ... 38

3.2.5 Case 5: Steiner triangulation with graph partitioning 39

4 References .. 40

IU

Incremental Triangulation via Edge Swapping and Local
Optimization

N. Lyn Wiltberger
Ames Research Center

1 GETTING STARTED
1.1 INTRODUCTION

This document is intended to serve as an instilation, usage, and basic theory guide for
the two-dimensionM triangulation software "HARLEY" written for the Silicon Graphics

IRIS workstation. This code consists of an incremental triaagulation algorithm based
on point insertion and loci edge swapping. Using this basic strategy, severi types of
triangulations can be produced depending on user selected options. For example, locl edge
swapping criteria can be chosen which minimizes the maximum interior angle (a MinMax
triangulation), or which maximizes the minimum interior angle (a MaxMin or Delaunay
triangulation). It should be noted that the MinMax triangulation is generally only locally
optimi (not globally optimi) in this measure. The MaxMin triangxllation, however, is
both locally and globally optimi. In addition, Steiner triangulations can be constructed
by inserting new sites at triangle circumcenters followed by edge swapping based on the
MaxMin criteria. Incremental insertion of sites iso provides flexibility in choosing cell
refinement criteria. For instance, by choosing a refinement measure based on solution

error, the code can be utilized for solution adaptive grid generation. A dynamic heap
structure has been implemented in the code so that once a refinement measure is specified

(i.e. maximum aspect ratio or some measure of a solution _adient for the solution adaptive
grid generation) the cell with the largest value of this measure is continually removed from
the top of the heap and refined. The heap refinement strategy allows the user to specify
either the number of cells desired or refine the mesh until all cell refinement measures satisuCy

a user specified tolerance level. Since the dynamic heap structure is constantly updated,
the igorithm alwaysrefinesthe particularcellinthe mesh with the largestrefmement .
criteriavalue.The codeallowstheuserto:

1) triangulate a cloud of prespecified points (sites).
2) triangulate a set of prespecified interior points constrained by prespecified boundary
cu e(s).
3) Steiner triangulate the interior/exterior of prespecified boundary curve(s).
4) refine existing triangulations based on solution error measures.
5) partition meshes based on the Cuthill-McKee, Spectri, and Coordinate bisection strate-
gies.
1.2 GETTING SET UP

The code, examples, and documentation are shipped via shell archive. Assuming that
the archive is correctly installed, subdirectories will be created which contain the source
code (/src), executable (/bin), examples (/examples), and documentation (/documenta-

tion). To display the command line options available simply type the program name:

IKIS.HOST> harley

harley usage:
-i [-I] input point file name <default:none>

-o [-0] outfile grid file <default:grid.dat>
-ig [-IG] input grid file (-a active) <default:none>
-is I-IS] input solution file (-a active) <default:none>

-os [-OS] output solution file (-a active) <default:soln.new>
-minmax [-MINMAX] <default:maxmin>

-p [-partition] <default:false>

-a [-adapt] (-ig -is required) <default:false>
-rival [-refine ival] <default:ival=6>

ival = I -> Velocity Sobolev measure
ival = 2 -> Velocity Divided Difference
ival = 3 -> Pressure Sobolev measure

ival = _ -> Pressure Divided Difference

ival = 5 -> Density Sobolev measure
ival = 6 -> Density Divided Difference

ival = 7 -> Entropy Sobolev measure
ival = 8 -> Entropy Divided Difference

ival = 9 -> Stag Enthalpy Sobolev measure

ival =I0 -> Stag Enthalpy Divided Difference

Input Fla£s

In general_ the code requires one or more input files in order to generate a triangulation.
Command line flags for possible input files begin with the letter i, i.e. -i -ig -is.
-i This flag precedes input file names containing point data such as interior sites and
bounding curves (specified as a collection of contiguous points).
-ig This flag precedes input file names containing initial grid data for use with solution
adaptive meshing. This option must be used in conjunction with the -a and -is flag s.
-is This flag precedes input file names containing initial solution data for use with solution
adaptive meshing. This option must be used in conjunction with the -a and -ig flags.

Output Fiats
In general, the code produces one or more output files upon completion of a triangulation.
Command line flags for possible output files begin with the letter o. i.e. -o -os.
-o This flag precedes output file names to which the final grid data will be written. A
default file name of "grid.dat" will be used if this flag is not specified.
-os This flag precedes output file names to which the interpolated solution data will be
written in the case of solution adaptive meshing. The newly interpolated solution data file
corresponds to the final grid generated by the code. A default file name of "soln.new" will
be used if this flag is not specified. This option is used in conjunction with the -a, -ig,
and -is flags.

2

Triangulation Fla_s

Two different types of triangulations (MaxMin or MinMax) can be constructed depending
on the choice of edge swapping criteria. The default edge swapping criteria used in the
code produces a MaxMin (Delaunay) triangulation.
-minmax The invocation of this flag results in a locally MinMax triangulation.

Partitionin_ Fla_
-p This flag enables partitioning of the newly generated mesh.
Solution Adaptive Meshing Fla._s
-a This flag enables solution adaptive meshing and must be specified in conjunction with
the -ig, -is, and -r ival flags.
-r ival The -r flag in conjunction with the ival parameter specifies the refinement
measure used during the solution adaptive meshing. The default value of ival is 6.

User Prompted Input
In addition to command line flags, the program also requires other types of user response
during the course of a triangulation. User input is required when the graphics window
is active. (The graphics window is usually active after the terminal bell sounds and the
message "HIT ESC TO EXIT" appears in the text window.) When the graphics window
is active, the graphics object can be manipulated via the mouse. To exit this graphics
manipulation mode and return to the text window, hit the escape key found on the terminal
keyboard. The second type of user input involves ASCII data input, i.e. the number of
cells desired, refinement tolerances, smoothing parameters, etc. Entering a "/" from the
terminal allows the program to proceed using default values. In most cases this effectively
bypasses the relevant option. One or more of the following user queries may appear during
a typical triangulation:

Enter max AK and max cells : These parameters control the degree of mesh refinement
in Steiner triangulations. The user can specify the largest cell aspect ratio allowable and/or
the maximum number of cells generated. The refinement terminates when one of the two
constraints is satisfied. For example, entering "0.0, 5000" would generate a mesh with
5000 cells.

Enter max error and max cells: These parameters control the degree of mesh refine-
ment in solution adaptive triangulations. The user can specify the largest cell refinement
measure allowable and/or the maximum number of cells generated. The refinement termi-
nates when one of the two constraints is satisfied.

Enter power [0,1]: This parameter controls the length scaling used in the solution
adaptation refinement measure. See later discussions for further details on the adaptation
measures.

Enter smoothing coefficient [0,1]: Thisparametercontrolstheamount ofsmooth-
ingperformed on a mesh. A value of 1 allows maximum mesh smoothing; a value of 0
results in no mesh movement.

Enter # of smoothing iterations: This integer parameter controls the number of
smoothing iterations applied. The default value of this parameter is 0.

Enter dimension of coloring: This integer parameter controls the number of mesh
partitions generated in the graph partitioning option. The dimension refers to the hyper-
cube dimension which means that the number of partitions generated is 2'tim.

3

Enter partitioning type: This parameter selects the type of graph partitioning used.
Several options are available as discussed in section 2.2.

1.3 CASE EXAMPLES

In this section, several case examples are given to illustrate typical usage of the
HARLEY software. The input files necessary to recreate these examples can be found
in the/examples directory created as part of the software installation.

1.3.1 Case 1: Triangulation of a point cloud

Triangulate a specified cloud of points. Given a set of points, form the triangulation
of the points with no specification of bounding curves (i.e. the outer boundary). For
the Delaunay triangulation, the resulting outer boundary formed from the triangulation
coincides with the convex hull of the point set. No additional points will be added. Local
edge swapping is determined either by the the MaxMin or MinMax criteria as selected by
the user. See Section 3.2.1 File Formats - Case 1 for input file format.

Case 1: Delaunay triangulation of random points

Screen output:

IKIS.HOST> harley -i easel.input -o casel.grid
You have chosen a Max-Min triangulation

Keading curve i Number of points 500
HIT ESC TO EXIT

HIT ESC TO EXIT
HIT ESC TO EXIT

Number of cells 979

Number of edges 1478
Number of unreachable cells was: 0

Grid write complete
IKIS.HOST>

4

1.3.2 Case 2: Constrained triangulation of a point cloud with prespecified
bounding curves

Triangulate a prespecified set of interior sites constrained by prespecified boundary
curve(s). Given the boundary curves, represented by contiguous points, an initial trian-
gulation of the boundary curves is formed. The remaining interior sites are then inserted
and local edge swapping occurs depending on whether a MinMax or MaxMin triangula-
tion is desired. Typically the MinMax triangulation will produce better results for meshes
containing highly stretched ceils. (See section 2.1.3.2 for further discussion.) The option
exists for additional interior points to be inserted after the initial specified points have
been inserted. In the case of additional point insertion, the user may specify either the
largest aspect ratio cell desired or the number of total cells desired. Additional points will
be inserted at the cell circumcenters. Refinement occurs in the cell with the largest aspect
ratio as determined by the dynamic heap structure. A "Poor Man's" Laplacian smoothing
is also available for postprocessing of triangulations. See section 3.2.2 File Formats - Case
2 for input file format.

Case 2: ConstrMned triangulation, prespecified points and curves
Screen output:

IKIS.HOST>harley-i case2.input-o case2.grid-minmax
You have chosena Min-Maxtriangulation
Keadingcurve I Numberof points 160
Keadingcurve 2 Numberof points 200
Keadingcurve 3 Numberof points 160
Keadingcurve 4 Numberof points 160
Keadingcurve 5 Numberof points 80
read interiorpts, numberof pts 16274
HIT ESC TO EXIT
HIT ESC TO EXIT
HIT ESC TO EXIT

5

Numberof cellsso far: 33314

Maximumcel! aspectratio: 951.0345690283474
Entermax AK and max cells:/

of Points,# of cells, Max AspectKatio-
Just made the finalpass 17034 33314 951.0345690283474
HIT ESC TO EXIT

Enter smoothingcoefficient[0,I]:/
Enter# of smoothingiterations:/
HIT ESC TO EXIT
Numberof cells 33314

Numberof edges 50351
Numberof unreachablecellswas: 0

Grid writecomplete
IKIS.HOST>

1.3.3 Case 3: Steiner triangulation with prespecified boundary curves

Steiner triangulate the interior/exterior of specified boundary curve(s). In this case,
an initial triangulation is constructed from the boundary curve(s), which are represented as
contiguous points. Steiner points are inserted into the interior of the outer boundary curve
(the last curve read in) and to the exterior of the inner boundary curve(s). New cells are
generated by refining the cell with the largest aspect ratio, as determined by the dynamic
heap structure. Each new point is placed at the circumcenter of the cell which is being
refined. The MinMax or MaxMin options may be used to determine if local edge swapping
occurs after a new point is inserted. The user can specify either the maximum aspect ratio
desired or the specific number of cells desired. A "Poor Man's" Laplacian smoothing is
also available for postprocessing of triangulations. See section 3.2.3 File Formats - Case 3
for input file format.

Case 3: Steiner triangulation with prespecified boundary curves

6

Screenoutput:

IRIS.HOST>harley -i case3.input-o case3.grid
You have chosena Max-Mintriangulation
Readingcurve I Numberof points 180
Keadingcurve 2 Numberof points 240
Readingcurve 3 Numberof points 180
Readingcurve 4 Numberof points 80
HIT ESC TO EXIT
HIT ESC TG EXIT
Numberof cellsso far: 684

Maximumcell aspectratio: 818911.8266297410
Entermax AR and max cells:1.5 5000

of Points,# of cells, Max AspectRatio-
Just made anotherpass 959 1242 5.452872734359350
Just made anotherpass 1847 3018 1.836270018454983
Just made anotherpass 2229 3782 1.742575760831057
Just made anotherpass 2677 4678 1.785552596845508
Just made the finalpass 2838 5000 1.607958714670921
HIT ESC TO EXIT

Enter smoothingcoefficient[0,i]:/
Enter# of smoothingiterations:/
HIT ESC TO EXIT
Numberof cells 5000

Numberof edges 7840
Numberof unreachablecellswas: 0

Grid writecomplete
IKIS.HOST>

1.3.4 Case 4: Solution adaptive triangulation

Refine existing triangulations based on solution error measures. In this case, initial
mesh and solution files are required. Steiner points are inserted into ceils in the interior
of the mesh. Cells are chosen for refinement based on a measure of solution error. The

MinMa× or MaxMin options may be used to determine what type of local edge swapping
occurs after a point is inserted. The user can specify either the maximum solution error
desired or the specific number of cells generated. Cells are refined until one of the two
criteria is satisfied. After the newly adapted mesh is generated, the code will also output
a new solution file with interpolated values at the new mesh points. Refinement measures
are calculated in the function refine_measure. The user can easily modify this function
for other possible error measures. A "Poor Man's" Laplacian smoothing is also available
for postprocessing of triangulations. See Section 3.2.4 File Formats - Case 4 for input file
format.

7

Case 4 (a) initial grid Case 4 (b) grid after 1 cycle

Case 4 (c) grid after 2 cycles Case 4 (d) solution after 2 cycles

Screen output:

IRIS.HOST>harley -ig case4.grid.1 -is q.1 -og case4.grid.2 -os q.l.new -a -r 6
Refinement type = 6 -> Density Divided Difference

You have chosen a Max-Min triangulation
Begin grid read
Number of cells = 5000

Number of nodes = 2655

Number of edges = 7655

Number of bc edges = 310
Number of curves = 2

Grid read complete
Solution read complete

8

Freestream Mach Number = 0.8500000
HIT ESC TO EXIT

Divided difference refinement measure was chosen
The form of the refinement measure in each cell is:

error measure = max(function divided difference)*(length)^power
length = sqrt(cell area)

Enter power[O,1]: .05
Number of cells so far: 5000
Maximum error 0.2706142854949063

Enter max error and/or max cells: 0 10000

of Points, # of cells, Max Refinement Value--

Just made another pass 2756 5200 0.1078620972206629

Just made another pass 2957 5600 6.8420049508985227E-02
Just made another pass 3158 6000 5.3211269196278507E-02

Just made another pass 3360 6400 4.6488102699898110E-02
Just made another pass 3560 6800 4.1857333467829391E-02
Just made another pass 3760 7200 3.8550165709022268E-02

Just made another pass 3960 7600 3.5883312867324539E-02
Just made another pass 4160 8000 3.3396920241482246E-02

Just made another pass 4361 8400 3.7104946134550842E-02
Just made another pass 4561 8800 3.0038342055240216E-02

Just made another pass 4761 9200 3.6224232731339447E-02

Just made the final pass 5162 9999 2.6390731462883296E-02
HITESC TO EXIT
Enter smoothing coefficient [0,1]: .9
Enter # of smoothing iterations: 3
HIT ESC TO EXIT
HIT ESC TO EXIT
HIT ESC TO EXIT

HIT ESC TO EXIT
Number of cells 9999

Number of edges 15161
Number of unreachable cells was: 0

Grid write complete
Solution write complete
IRIS.HOST>

IRIS.HOST>harley-ig case4.grid.2 -is q.2 -og case4.grid.3 -os q.2.new -a -r 6
Refinement type = 6 -> Density Divided Difference

You have chosen a Max-Min triangulation
Begin grid read
Number of cells = 9999

Number of nodes = 5162

Number of edges = 15161

Number of bc edges = 325
Number of curves = 2

Grid read complete
Solution read complete

9

Freestream Mach Number = 0.8500000

HIT ESC TO EXIT
Divided difference refinement measure was chosen

The form of the refinement measure in each cell is:
error measure = max(function divided difference)*(length)'power

length = sqrt(cell area)
Enter power[O,l]: .2
Number of cells so far: 9999

Maximum error 0.1266147313334715
Enter max error and/or max cells: 0 15000

of Points, # of cells, Max Kefinement Value--

Just made another pass 5363 10400 7.0304236197733809E-02
Just made another pass 5563 10800 5.4593397958585754E-02

Just made another pass 6564 12800 3.1269508738813693E-02
Just made another pass 6764 13200 2.8677292377648551E-02

Just made another pass 6965 13600 2.6975830698469089E-02
Just made another pass 7165 14000 2.5359550981042922E-02
Just made another pass 7365 14400 2.4198127105300599E-02
Just made the final pass 7665 14999 2.2304001575539640E-02
HIT ESC TO EXIT

Enter smoothing coefficient [0,I]: .8
Enter # of smoothing iterations: 3
HIT ESC TO EXIT
HIT ESC TO EXIT

HIT ESC TO EXIT
HIT ESC TO EXIT
Number of cells 14999

Number of edges 22664
Number of unreachable cells was: 0

Grid write complete
Solution write complete
IKIS.HOST>

1.3.5 Case 5: Steiner triangulation with graph partitioning

Steiner triangulate the interior/exterior of specified boundary curve(s) and partition
the resulting mesh. In this case, an initial triangulation is constructed from the boundary
curve(s), which are represented as contiguous points. Steiner points are inserted into
the interior of the outer boundary curve (the last curve read in) and to the exterior of
the inner boundary curves. New cells are generated by refining the cell with the largest
aspect ratio, as determined by the dynamic heap structure. Each new point is placed
at the circumcenter of the cell which is being refined. The MinMax or MaxMin options
may be used to determine if local edge swapping occurs after a new point is inserted.
The user can specify either the maximum aspect ratio desired or the specific number of
cells desired. A "Poor Man's" Laplacian smoothing is also available for postprocessing of
triangulations. The resulting mesh is partitioned using one of the available partitioning

10

methods (Cuthill-McKee, Spectral, and Coordinate bisection). The user is queried for the
hypercube dimension; which means that the number of partitions generated is 2 di". The
corresponding theory for the partitioning strategies can be found in section 2.2. See section
3.2.3 File Formats - Case 3 for input file format.

Case 5: Mesh Partitioning - Cuthill-McKee (8 partitions).
Screen output:

IRIS.HOST>harley-i case5.input -o case5.cm.grid -p
You have chosen a Max-Min triangulation

Reading curve I Number of points 160

Reading curve 2 Number of points 200
Reading curve 3 Number of points 160

Reading curve 4 Number of points 160
Reading curve 5 Number of points 80
HIT ESC TO EXIT
NIT ESC TO EXIT

Number of cells so far: 766

Maximum cell aspect ratio: 5758719.974066261
Enter max AK and max cells: 0 12000

of Points, # of cells, M_x Aspect Ratio-
Just made another pass 1097 1440 4.863169589305104
Just made another pass 1323 1892 3.064135153182815
Just made another pass 2600 4446 1.791479553061699

Just made another pass 2661 4568 2.552360505432250
Just made another pass 2894 5034 1.626761070576061

Just made another pass 3048 5342 2.487128429433772
Justmade another pass 3301 5848 1.786355839666233

Just made another pass 3302 5850 1.550959518336859
Just made another pass 3395 6036 2.447001889739652

11

Just made another pass 3396 6038 1.537563800683395
Just made another pass 4205 7656 1.797896940612256
Just made another pass 4252 7750 1.488079533428099
Just made another pass 4326 7898 1.823219088351195
Just made another pass 4776 8798 1.635043888200062

Just made another pass 4777 8800 1.552025883011375
Just made another pass 4799 8844 2.793676636319880

JuSt made another pass 5209 9664 3.401915281402041
Just made the final pass 6377 12000 1.478897132303701
HITESC T0 EXIT
Enter smoothing coefficient [0,i]: .I
Enter # of smoothing iterations: 3
HIT ESCT0 EXIT
HIT ESCT0 EXIT
HIT ESCT0 EXIT
HIT ESC T0 EXIT

Number of cells 12000

Number of edges 18380
Number of unreachable cells was: 0

Grid write complete
Enter dimension of coloring: 3
I : Coordinate Bisection

2 : Cuthill-McKee

3 : Spectral

Enter partitioning type: 2
HIT ESC TO EXIT

Partitioning write complete
IKIS.HOST>

Case 5 Mesh Partitioning- Spectral (8 partitions).

12

Screen output:

T_o_h_ _ -i_C__inDut -0 caseS,sp._rid -p• y .a_o._npu_ -u _a_es.sp.grza -p
You have chosen a Max-Min triangulation
Keading curve 1 Number of points 160

Keading curve 2 Number of points 200

Keading curve 3 Number of points 160
Keading curve 4 Number of points 160

Keading curve 5 Number of points 80
HITESC70 EXIT
HIT ESC 70 EXIT
Number of cells so far: 766

Maximum cell aspect ratio: 5758719.974066261
Enter max AK and max cells: 0 12000

of Points, # of cells, Max Aspect Katio-
Just made another pass 1097 1440 4.863169589305104

Just made another pass 1323 1892 3.064135153182815
Just made another pass 2600 4446 1.791479553061699

Just made another pass 2661 4568 2.552360505432250
Just made another pass 2894 5034 1.626761070576061

Just made another pass 3048 5342 2.487128429433772
Just made another pass 3301 5848 1.786355839666233

Just made another pass 3302 5850 1.550959518336859
Just made another pass 3395 6036 2.447001889739652

Just made another pass 3396 6038 1.537563800683395
Just made another pass 4205 7656 1.797896940612256

Just made another pass 4252 7750 1.488079533428099
Just made another pass 4326 7898 1.823219088351195

Justmadeanotherpass 4776 8798 1.635043888200062
Just made another pass 4777 8800 1.552025883011375
Just made another pass 4799 8844 2.793676636319880
Just made another pass 5209 9664 3.401915281402041

Just made the final pass 6377 12000 1.478897132303701
HITESC70 EXIT
Enter smoothing coefficient [0,1]: .i
Enter # of smoothing iterations: 3
HITESC70 EXIT
HITESCTO EXIT
HITESCTO EXIT
HITESCTO EXIT
Number of cells 12000

Number of edges 18380
Number of unreachable cells was: 0

Grid write complete

Enter dimension of coloring: 3
1 : Coordinate Bisection

13

2 : Cuthill-McKee

3 : Spectral
Enter partitioning type: 3
number of partitions = 8
Fiedler Value = -1.67828261852264E+00
Fiedler Value = -1.74138307571411E+00
Fiedler Value = -1.62928771972656E+00

Fiedler Value = -1.74765408039093E+00

Fiedler Value = -1.71586239337921E+00
Fiedler Value = -1.59011912345886E+00

Fiedler Value = -1.79067003726959E+00
HIT ESC TO EXIT

Partitioning write complete
IKIS.HOST>

14

2 SOME THEORY

In this section, we give a brief discussion of the relevant theory associated with De-
launay and MinMax triangulations. We also discuss the incremental insertion algorithm
from which the HARLEY triangulation code is constructed. Finally, we briefly mention
the partitioning problem and the partitioning algorithms included in the HARLEY code.
2.1 TRIANGULATION METHODS

Although many algorithms exist for triangulating sites (points) in an arbitrary number
of space dimensions, only a few have been used on practical problems. In particular,
Delaunay triangulation has proven to be a very useful triangulation technique. This section
will present some of the basic concepts surrounding Delaunav and related triangulations.

2.1.1 Voronoi Diagram and Delaunay Triangulation

Recall the definition of the Dirichlet tessellation in a plane. The Dirichlet tessellation
of a point set is the pattern of convex regions, each being closer to some point P in the
point set than to any other point in the set. These Dirichlet regions are also called Voronoi
regions. The edges of Voronoi polygons comprise the Voronoi diagram, see figure 2.1.1.
The idea extends naturally to higher dimensions.

Figure 2.1.1 Voronoi diagram of 40 random sites.

Voronoi diagrams have a rich mathematical theory. The Voronoi diagram is believed to be
one of the most fundamental constructs defined by discrete data. Voronoi diagrams have
been independently discovered in a wide variety of disciplines. Computational geometri-
cians have a keen interest in Voronoi diagrams. It is well known that Voronoi diagrams are
related to convex hulls via stereographic projection. Point location in a Voronoi diagram
can be performed in O(log(n)) time with O(n) storage for n regions. This is useful in

15

solving post-office or related problems in optimal time. Another example of the Voronoi
diagram which occurs in the natural sciences can be visualized by placing crystal "seeds"
at random sites in 3-space. Let the crystals grow at the same rate in all directions. When
two crystals collide simply stop their growth. Tile crystal formed for each site would rep-
resent that volume of space which is closer to that site than to any other site. This would
effectively construct a Voronoi diagram. We now consider tile role of Voronoi diagrams in
Delaunay triangulation.

Definition; The Delaunay triangulation of a point set is defined as the dual of the
Voronoi diagram of the set.

The Delaunay triangulation in two space dimensions is formed by connecting two points if
and only if their Voronoi regions have a common border segment. If no four or more points
are cocircular, then we have that vertice._ of the Voronoi are circumcenter_ of the triangle_.
This is true because vertices of the Voronoi represent locations that are equidistant to three
(or more) sites. Also note that from the definition of duality, edges of the Voronoi are in
one-to-one correspondence to edges of the Delaunay triangulation (ignoring boundaries).
Because edges of the Voronoi diagram are the locus of points equidistant to two sites, each
edge of the Voronoi diagram is perpendicular to the corresponding edge of the Delaunay
triangulation. This duality extends to three dimensions in a straightforward way. The
Delaunay triangulation possesses several alternate characterizations and many properties
of importance. Unfortunately, not all of the two dimensional characterizations have three-
dimensional extensions. To avoid confusion, properties and algorithms for construction of
two dimensional Delaunay triangulations will be considered here.

2.1.2 Properties of a 2-D Delaunay Triangulation

(1)Uniqueness. The Delaunay triangulation is unique. This assumes that no four sites are
cocircular. The uniqueness follows from the uniqueness of the Dirichlet tessellation.

(2)The circumcircle criteria. A triangulation of AT_>2 sites is Delaunay if and only if the
circumcircle of every interior triangle is point-free. For if this was not true, the Voronoi
regions associated with the dual would not be convex and the Dirichlet tessellation would
be invalid. Related to the circumcircle criteria is the incircle test for four points as shown
in figures 2.1.2(a)-2.1.2(b)

D
A A

C C

B B

Figure 2.1.2 Incircle test for /NABC and D. (left) (true), (right) (false).

16

This test is true if point D lies interior to the cireumcircle of/XABC which is equivalent
to testing whether /ABC + ZCDA is less than or greater than ZBCD + ZBAD. More
precisely we have that

< 180 ° incircle false
ZABC + ZCDA = 180 ° A,B,C,D cocircular

> 180 ° incircle true

Since interior angles of the quadrilateral sum to 360 °, if the circumcircle of AABC contains
D then swapping the diagonal edge from position A - C into B - D guarantees that the
new triangle pair satisfies the circumcircle criteria. Furthermore, this process of diagonal
swapping is local, i.e. it does not disrupt the Delaunayhood of any triangles adjacent to
the quadrilateral.

(3)Edge circle property. A triangulation of sites is Delaunay if and only if there exists some
circle passing through the endpoints of each and every edge which is point-free. This char-
acterization is very useful because it also provides a mechanism for defining a constrained
Delaunay triangulation where certain edges are prescribed a priori. A triangulation of
sites is a constrained Delaunay triangulation if for each and every edge of the mesh there
exists some circle passing through its endpoints containing no other site in the triangula-
tion which is vi._ible to the edge. In figure 2.1.2(c), site d is not visible to the segment a-c
because of tile constrained edge a-b.

b

k
\

I
I

/
/

/

a

Figure 2.1.2(c) Constrained Delaunay triangulation. Site d is not visible to a-c due to
constrained segment a-b.

(4)Equiangularity property. Delaunay triangulation maximizes the minimum angle of the
triangulation. For this reason Delaunay triangulation is often called the MaxMin triangu-
lation. This property is also locally true for all adjacent triangle pairs which form a convex
quadrilateral. This is the basis for the local edge swapping algorithm of Lawson [1].

(5)Minimum Containment Circle. A recent result by Rajah [2] shows that the Delaunay
triangulation minimizes the maximum containment circle over the entire triangulation.
The containment circle is defined as the smallest circle enclosing the three vertices of a
triangle. This is identical to the circumcircle for acute triangles and a circle with diameter
equal to the longest side of the triangle for obtuse triangles (see figure 2.1.2(d)).

17

(a) (b)

Figure 2.1.2(d) Containment circles for acute (a) and obtuse (b) triangles.

This property extends to n dimensions. Unfortunately, the result does not hold lexico-
graphically.

(6)Nearest neighbor property. An edge formed by joining a vertex to its nearest neighbor
is an edge of the Delaunay triangulation. This property makes Delaunay triangulation a
powerful tool in solving the closest proximity problem. Note that the nearest neighbor
edges do not describe all edges of the Delaunay triangulation.

(7)Minimal roughness. The Delaunay triangulation is a minimal roughness triangulation
for arbitrary sets of scattered data, Rippa [3]. Given arbitrary data fi at all vertices of the
mesh and a triangulation of these points, a unique piecewise linear interpolating surface
can be constructed. The Delaunay triangulation has the property that of all triangulations
it minimizes the roughness of this surface as measured by the following Sobolev semi-norm:

+ Kv dxdy

This is a interesting result as it does not depend on the actual form of the data. This also
indicates that Delaunay triangulation approximates well those functions which minimize
this Sobolev norm. One example would be the harmonic functions satisfying Laplace's
equation with suitable boundary conditions which minimize exactly this norm. In a later
section, we Will prove that a Delaunay triangulation guarantees a maximum principle for
the discrete Laplacian approximation (with linear elements).

2.1.3 Incremental Insertion Algorithm

For simplicity, assume that the site to be added lies within a bounding polygon of tile
existing triangulation. If we desire a triangulation from a new set of sites, three initial
phantom points can always be added which define a triangle large enough to enclose all
points to be inserted. In addition, interior boundaries are usually temporarily ignored
for purposes of the Delaunay triangulation. After completing the triangulation, spurious
edges are then deleted as a postprocessing step. Incremental insertion algorithms begin

18

by inserting a new site into an existing Delaunay triangulation. This introduces the task
of point location in the triangulation. Our incremental algorithm requires knowing which
triangle the new site falls within. A search technique based on mesh walking (traversal)
is implemented due to its simplicity. This method works extremely well when successively
added points are close together. The basic idea is start at the location in the mesh of the
previously inserted point and move one edge (or cell) at a time in the general direction
of the newly added point. In the worst case, each point insertion requires O(N) walks.
This would result in a worst case overall complexity O(N2). For randomly distributed

points, the average point insertion requires O(N ½) walks which gives an overall complexity
O(N}). For many applications where successive points tend to be close together, the
number of walks is roughly constant and this simple algorithm can be very competitive
when compared to more sophisticated tree search algorithms. In a mesh adaptation and
refinement scenario the particular cell for site insertion is determined as part of the mesh
adaptation algorithm, thereby reducing the burden of point location.

2.1.3.1 Green and Sibson Algorithm - The MaxMin Triangulation

Implementation of the Green and Sibson [4] algorithm is relatively straightforward.
The first step is location, i.e. find the triangle containing point Q. Once this is done,
three edges are then created connecting Q to the vertices of this triangle as shown in
figure 2.1.3.1(a). If the point falls on an edge, then the edge is deleted and four edges are
created connecting to vertices of the newly created quadrilateral. Using the circumcircle
criteria it can be shown that the newly created edges (3 or 4) are automatically Delaunay.
Unfortunately, some of the original edges are now incorrect. We need to somehow find
all "suspect" edges which could possibly fail the circle test. Given that this can be done
(described below), each suspect edge is viewed as a diagonal of the quadrilateral formed
from the two adjacent triangles. The circumcircle test is applied to either one of the two
adjacent triangles of the quadrilateral. If the fourth point of the quadrilateral is interior to
this circumcircle, the suspect edge is then swapped as shown in figure 2.1.3.1(b), two more
edges then become suspect. At any given time we can immediately identify all suspect
edges. To do this, first consider the subset of all triangles which share Q as a vertex. One
can guarantee at all times that all initial edges incident to Q are Delaunay and any edge
made incident to Q by swapping must be Delaunay. Therefore, we need only consider the
remaining edges of this subset which form a polygon about Q as suspect and subject to
the incircle test. The process terminates when all suspect edges pass the circumcircle test.

The algorithm can be summarized as follows:

Algorithm: Incremental Delaunay Triangulation, Green and Sibson [17]

Step 1. Locate existing cell enclosing point Q.

Step 2. Insert site and connect to 3 or 4 surrounding vertices.

Step 3. Identify suspect edges.

Step 4. Perform edge swapping of all suspect edges failing the incircle test.

Step 5. Identify new suspect edges.

Step 6. If new suspect edges have been created, go to step 3.

19

(a) (b)

Figure 2.1.3.1 (a) Inserting of new vertex, (b) Swapping of suspect edge.

The Green and Sibson algorithm can be implemented using standard recursive pro-
gramming techniques. The heart of the algorithm is the recursive procedure which would
take the following form for the configuration shown in figure 2.1.3.1(c):

procedure swap[vq, vl, v2. v3, edges]

if(incircle[vq,v,,v2,v3] = TRUE)then

call reconfig_edges[vq. Vl, v2, v3, edges]

call swap[vq, Va, v4. v2, edges]

call swap[vq, v2, vs, v3, edges]

endif

endprocedure

This example illustrates an important point. The nature of Delaunay triangulation
guarantees that any edges swapped incident to Q will be final edges of the Delaunay
triangulation. This means that we need only consider forward propagation in the recursive
procedure. In a later section, we will consider incremental insertion and edge swapping for
generating non-Delaunay triangulations based on other swapping criteria. This algorithm
can also be pl"ogrammed recursively but requires backward propagation in the recursive
implementation. For the Delaunay triangulation algorithm, the insertion algorithm would
simplify to the following three steps:

Recursive Algorithm: Incremental Delaunay Triangulation, Green and Sibson

Step 1. Locate existing cell enclosing point Q.

Step 2. Insert site and connect to surrounding vertices.

Step 3. Perform recursive edge swapping on newly formed cells (3 or 4).

20

3 3

2Q

"1 1 4(a) (b)

Figure 2.1.3.1(c) Edge swapping with forward propagation.

2.1.3.2 The MinMax Triangulation

As Babu_ka and Aziz [5] point out, from the point of view of finite elements the
MaxMin (Delaunay) triangulation is not essential. What is essential is that no angle be
too close to !80 ° . In other words, triangulations which minimize the maximum angle
are more desirable. These triangulations are referred to as MinMax triangulations. In
this case, the diagonal position for convex pairs of triangles is chosen which minimizes
the maximum interior angle for both triangles. This type of algorithm is guaranteed to
converge in a finite number of steps using arguments similar to Delaunay triangulation.
Figures 2.1.3.2(a) and 2.1.3.2(b) present a Delaunay (MaxMin) and MinMax triangulation
for 100 random points.

Figure 2.1.3.2 (a) Delaunay Triangulation (b) MinMax Triangulation

We have implemented a version of the Green and Sibson algorithm [4] which has been

21

modified to produce locally optimal MinMax triangulations using incremental insertion and
local edge swapping. The algorithm is implemented using recursive programming with
complete forward and backward propagation (contrast figures 2.1.3.2(c) and 2.1.3.1(c)).
This is a necessary step to produce locally optimized meshes.

3 3 5

2 Q

1 1 4
(a) (b)

Figure 2.1.3.2(c) Edge swapping witll forward and backward propagation

The MinMax triangulation has proven to be very useful in CFD. Figure 2.1.3.2(d) shows
the Delaunay triangulation near the trailing edge region of an airfoil with extreme point
clustering.

J

JJ

j J

Figure 2.1.3.2(d) Delaunay triangulation near trailing edge of airfoil.
Upon first inspection, the mesh appears flawed near the trailing edge of the airfoil. Further
inspection and extreme magnification near the trail edge of the airfoil (figure 2.1.3.2(e))

22

indicates that the grid is a mathematically correct Delaunay triangulation. Because the
Delaunay triangulation does not control the maximum angle, the cells near the trailing
edge have angles approaching 180° . The presence of nearly collapsed triangles leaves
considerable doubt as to the accuracy of any numerical solutions computed in the trailing
edge region.

Figure 2.1.3.2(e) Extreme closeup of Delaunay triangulation near trailing edge of airfoil.

Edge swapping based on the MinMax criteria via incremental insertion produces the desired
result as shown in figure 2.1.3.2(f).

.,...._J j

Figure 2.1.3.2(f) MinMax triangulation near trailing edge of airfoil.

23

2.1.4 Steiner Triangulation

Definition: A Steiner triangulation is any triangulation that adds additional sites to an
existing triangulation to improve some measure of grid quality.

The insertion algorithm described earlier provides a simple mechanism for generating
Steiner triangulations. Holmes [6] demonstrated the feasibility of inserting sites at cir-
cumcenters of Delaunay triangles into an existing 2-D triangulation to improve measures
of grid quality. This has the desired effect of placing the new site in a position that guaran-
tees that no other site in the triangulation can lie closer than the radius of the circumcircle,
see figure 2.1.4(a). In a loose sense, the new site is placed as far away from other nearby
sites as conservatively possible.

Warren et al [7] and Anderson [8] further demonstrated the utility of this type of Steiner
triangulation in the generation and adaptive refinement of 2-D meshes. The algorithm
discussed herein also permits Steiner triangulations based on either MinMax or MaxMin
(Delaunay) insertion. Only in the latter case is the insertion at triangle circumcenters
truly justifiable.

c b

c

b

a a

(a) (b)

Figure 2.1.4(a) Inserting site at circumcenter of acute and obtuse triangles.

The 2-D Steiner point grid generation algorithm described in [6,7,8] consists of the
following steps. The first step is the Delaunay triangulation of the boundary data. Usually
three or four points are placed in the far field with convex hull enclosing all the bound-
ary points. Starting with a triangulation of these points, sites corresponding to boundary
curves are incrementally inserted using Sibson's algorithm in [4] as shown in figure 2.1.4(b).
The initial triangulation does not guarantee that all boundary edges are members of the
triangulation. Local edge swapping is performed so as to produce a constrained Delaunay
triangulation which guarantees that all boundary edges are actual edges of the triangula-
tion.

24

Figure 2.1.4(b) Initial triangulation of boundary points.

The boundary edges are marked so that they cannot be removed as the triangulation is
refined. The user must specify some measure of quality for triangle refinement (aspect
ratio, area, containment circle radius, for example) and a threshold value for the measure.
Some care must be taken to insure that measures are chosen which are guaranteed to be
reduced when the refinement takes place. Figure 2.1.4(c) shows a Steiner triangulation
with MaxMin insertion and refinement based on maximum aspect ratio.

Figure 2.1.4(c) Steiner triangulation with sites inserted at circumcenters to reduce max-
imum cell aspect ratio.

25

In the present algorithm, a dynamic heap data structure of the quality measure is main-
tained. (Heap structures are a very efficient way of keeping a sorted list of entries with
insertion and query time O(logN) for N entries.) The triangle with the largest value
of the specified measure will be located at the top of the heap at all times during the
triangulation. This makes implementation of a Steiner triangulation which minimizes the
maximum "value of the measure very efficient (and unique). In this implementation, the
user can either specify the number of triangles to be generated or a threshold value of the
measure. Note that multiple measures can be refined lexicographically.

Figure 2.1.4(d) Steiner triangulation of Texas coast and the Gulf of Mexico.

This triangulation has proven to be very flexible. For instance, figure 2.1.4(d) shows a
Steiner triangulation of the Texas coast and Gulf of Mexico.

2.1.5 Solution Adaptive Triangulation

The incremental insertion algorithm also permits mesh refinement based on data (i.e.
solution) dependent measures. An initial mesh and data are required. In all cases, the
solution data is assumed to be given at vertices of the mesh and varies linearly within each
triangle (see section 3.2.4 for the appropriate file format). For example in figure 2.1.5,
solution values fl, f2, f3 are shown located at the vertices of triangle T123.

fa

Figure 2.1.5 Generic triangle depicting solution at vertices (fl, f2, f3).

26

From the solution data, refinement measures are computed which are usually some estimate
of the solution error in a numerical computation. A dynamic heap structure is created to
facilitate a refinement sequence which refines triangles with the largest refinement measure
first. Monotone cubic Hermite spline interpolants of bounding curves are used for placing
new vertices on boundary curves as needed in the refinement process. As triangles are
refined and vertices added, the solution is linearly interpolated onto the new vertices for
purposes of producing a new solution data file corresponding to the refined mesh. The
current implementation assumes that a 4-vector, U, of solution data is given at vertices of
the mesh. This 4-vector corresponds to the conserved flow variables of the compressible
Euler equations (mass, Cartesian momentum components, and energy):

From this vector, several scalar functions, fi, can be formed as described in the us-
age section 1.2. From these scalar functions, two refinement measures are available:
Sobolev Semi-Norm Measure

M(T123) =/_ ((f,)2 + (fy)2) da
-I'/'123

Scaled Edge Gradients

1(T123) =max(If2 - fl!,[f - f21,1f3 - f_[)L p, L= x/Areal23

In the latter measure, the parameter p is user specified. Typical values of p range from
0 to 1. Other triangle-wise measures can be incorporated by modifying the function "re-
fine_measure."

2.2 GRAPH PARTITIONING FOR PARALLEL COMPUTING

An efficient partitioning of a mesh for distributed memory machines is one that en-
sures an even distribution of computational workload among the processors and minimizes
the amount of time spent in interprocessor communications. The former requirement is
termed load balancing. For if the load were not evenly distributed, some processors will
have to sit idle at synchronization points waiting for other processors to catch up. The
second requirement comes from the fact that communication between processors takes time
and it is not always possible to hide this latency in data transfer. In our parallel imple-
mentation of a finite-volume flow solver on unstructured grids, data for the nodes that
lie on the boundary between two processors is exchanged, hence requiring a bidirectional
data-transfer. On many systems, a synchronous exchange of data can yield a higher perfor-
mance than when done asynchronously. To exploit this fact, edges of the communication
graph are colored such that no vertex has more than one edge of a certain color incident
upon it. A communication graph is a graph in which the vertices are the processors and
an edge connects two vertices if the two corresponding processors share an interprocessor

27

boundary. The colors in the graph represent separate communication cycles. For instance,
the mesh partitioned amongst four processors as shown in figure 2.2(a), would produce the
communication graph shown in figure 2.2(b).

1 4

3

2 2 3

(a) (b)

Figure 2.2 (a) Four partition mesh, (b) Communication graph.

The graph shown in figure 2.2(b) can be colored edgewise using three colors. For exam-
ple, in the first communication cycle, processors (1.4) could perform a synchronous data
exchange as would processors (2, 3). In the second communication cycle, processors (1, 2)
and (3.4) would exchange and in the third cycle, processors (1, 3) would exchange while
processors 2 and 4 sit idle. Vizing's theorem proves that any graph of maximum vertex
degree A (number of edges incident upon a vertex) can be colored using n colors such that

<_n < A + 1. Hence, any operation that calls for every processor to exchange data with
its neighbors will require n communication cycles.

The actual cost of communication can often be accurately modeled by the linear
relationship:

Cost = a + tim

where a is the time required to initiate a message, _ is the rate of data-transfer between
two processors and m is the message length. For n messages, the cost would be

Cost= +
n

This cost can be reduced in two ways. One way is to reduce A thereby reducing n. The
alternative is to reduce the individual message lengths. The bounds on n are 2 _<N <_P- 1
for P >__3 where 19 is the total number of processors. Figure 2.2(c) shows the partitioning
of a mesh which reduces A, and 2.2(d) shows a partitioning which minimizes the message
lengths. For the mesh in figure 2.2(c), A = 2 while in figure 2.2(d), A = 3. However. the
average message length for the partitions shown in figure 2.2(d) is about half as much as
that in figure 2.2(c).

28

(c) (d)

Figure 2.2 (c) Mesh partitioning with minimized A, (d) Mesh with minimizes message

length.

In practice,itis difficultto partitionan unstructured mesh while simultaneouslymini-

mizing the number and length of messages. In the followingparagraphs, a few of the

most popular partitioningalgorithmswhich approximately accomplish thistask willbe

discussed.All the algorithmsdiscussedbelow: coordinatebisection,Cuthill-McKee,and

spectralpartitioningare evaluatedin the paper by Venkatakrishnan,Simon, and Barth

[9].Thispaper evaluatesthe partitioningtechniqueswithin the confinesof an explicit,un-
structuredfinite-volumeEuler solver.Spectralpartitioninghas been extensivelystudied

by Simon [I0].

Note thatforthe particularapplicationsthatwe have inmind (afinite-volumescheme

with solutionunknowns at verticesof the mesh), itmakes senseto partitionthe domain

such that the separatorscorrespondto edges of the mesh. Also note that the partitioning

algorithmsa11can be implemented recursively.The mesh isfirstdividedinto two sub-

meshes of nearlyequal size.Eachofthese sub-meshes issubdivided into two more sub-

meshes and the processin repeated untilthe desirednumber of partitionsP isobtained

(P isa integerpower of 2).Sincewe desirethe separatorofthe partitionsto coincidewith

edges of the mesh, the divisionof a sub-mesh intotwo piecescan be viewed as a 2-coloring

of lace8 of the sub-mesh. For the Cuthill-McKee and spectralpartitioningtechniques,

thisamounts to supplyingthesealgorithmswith the dualof the graph forpurposes of the

2-coloring.The balancingofeach partitionisusuallydone ceHwise;although an edgewise

balancingismore appropriatein the presentapplications.Due to the recursivenature of

partitioning,the algorithmsoutlinedbelow representonly a singlestep of the process.

2.2.1 Coordinate Bisection Partitioning

In the coordinatebisectionalgorithm,facecentroidsare sortedeitherhorizontallyor

verticallydepending of the currentlevelof the recursion.A separatoris chosen which

balances the number of faces.Faces are coloreddepending on which sideof the separa-

tor they are located. The actualedges of the mesh correspondingto the separatorare

characterizedas thoseedges which have adjacentfacesof differentcolor,see figure2.2.1.

This partitioningisvery efficientto createbut givessub-optimalperformance on parallel

computations owing to the longmessage lengthsthan can routinelyoccur.

29

Figure 2.2.1 Coordinate bisection (16 partitions).

2.2.2 Cuthill-McKee Partitioning

The Cuthill-McKee (CM) algorithm described earlier can also be used for recursive
mesh partitioning. In this case, the Cuthill-McKee ordering is performed on the dual of
the mesh graph.

Figure 2.2.2 Cuthill-McKee partitioning of mesh (16 partitions).

A separator is chosen either at the median of the ordering (which would balance the
coloring of faces of the original mesh) or the separator is chosen at the level set boundary
closest to the median as possible. This latter technique has the desired effect of reducing
the number of disconnected sub-graphs that occur during the course of the partitioning.
Figure 2.2.2 shows a Cuthill-McKee partitioning for the multi-component airfoil mesh.
The Cuthill-McKee ordering tends to produce long boundaries because of the way that

30

the ordering is propagated through a mesh. The maximum degree of the communication
graph also tends to be higher using the Cuthill-McKee algorithm. The results shown in
ref. [9] for multi-component airfoil grids indicate a performance on parallel computations
which is slightly worse than the coordinate bisection technique.

2.2.3 Spectral Partitioning

The last partitioning considered is the spectral partitioning which exploits properties
of the Laplacian E of a graph (defined below). The algorithm consists of the following
steps:

Algorithm: Spectral Partitioning.

Step i. Calculate the matrix £ associated with the Laplacian of the graph (dual graph in
the present case).

Step 2. Calculate the eigenvalues and eigenvectors of £.
Step 3. Order the eigenvalues by magnitude, _1 <_A2 _<A3...AN.

Step 3. Determine the smallest nonzero eigenvalue, Af and its associated eigenvector x I
(the Fiedler vector).
Step 5. Sort elements of the Fiedler vector.

Step 6. Choose a divisor at the median of the sorted list and 2-color vertices of the graph
(or dual) which correspond to elements of the Fielder vector less than or greater than the
median value.

The spectral partitioning of the multi-component airfoil is shown in figure 2.2.3(a). In ref-
erence [9], we found that parallel computations performed slightly better on the spectral
partitioning than on the coordinate bisection or Cuthill-McKee. The cost of the spec-
tral partitioning is very high (even using a Lanczos algorithm to compute the eigenvalue
problem). It has yet to be determined if the spectral partitioning will have practical merit.

Figure 2.2.3(a) Spectral partitioning of multi-component airfoil (16 partitions).

The spectral partitioning exploits a peculiar property of the "second" eigenvalue of the

31

Laplacian matrix associated with a graph. The Laplacian matrix of a graph is simply

£ = -7?+,4.

where .,4 is the standard adjacency matrix

1 e(vi,vj) E G•Aij --_ 0 otherwise

and D is a diagonal matrix with entries equal to the degree of each vertex. Di = d(vi).
From this definition, it should be clear that rows of £ each sum to zero. Define an N-vector,

s = [1, 1, 1, ...IT. By construction we have that

£s = O.

This means that at least one eigenvalue is zero with s as an eigenvector.
The objective of the spectral partitioning is to divide the mesh into two partitions of equal
size such that the number of edges cut by the partition boundary is approximately minimized.

Technically speaking, the smallest nonzero eigenvalue need not be the second. Graphs
with disconnected regions will have more that one zero eigenvalue depending on the number
of disconnected regions. For purposes of discussion, we assume that disconnected regions
are not present, i.e. that A2 is the relevant eigenmode.
Elements of the proof:

Define a partitioning vector which 2-colors the vertices

p = [+1,-1,-1.+1,+1,...,+1,-1] T

depending on the sign of elements of p and the one-to-one correspondence with vertices of
the graph, see for example figure 2.2.3(b). Balancing the number of vertices of each color
amounts to the requirement that

s_l_p

where we have assumed an even number of vertices.

-ll

+1

Figure 2.2.3(b) Arbitrary graph with 2-coloring showing separator and cut edges.

32

The key observation is that the number of cut edges, Ec, is precisely related to the L1
norm of the Laplacian matrix multiplying the partitioning vector, i.e.

4Ec= [Iz;p/[1

which can be easily verified. The goal is to minimize cut edges. That is to find p which
minimizes IlL;pillsubject to the constraints that Ilptll = N and s 2_ p. Since L; is a real
symmetric (positive semi-definite) matrix, it has a complete set of real eigenvectors which
can be orthogonalized with each other. The next step of the proof would be to extend the
domain of p to include real numbers (this introduces an inequality) and expand p in terms
of the orthogonal eigenvectors.

71

p = _ cixi
i=1

By virtue of
£s=O

we have that xl = s. It remains to be shown that II£plllis minimized when p = p' =
rx2/llx2lll,i.e. when the Fiedler vector is used. Inserting this expression for p we have
that

It is a simple matter to show that adding any other eigenvector component to p_ while
insisting that IIPlI1= N can only increase the L1 norm. This would complete the proof.
Figure 2.2.4(c) plots contours (level sets) of the Fiedler vector for the multi-component
airfoil problem.

Figure 2.2.4(c) Contours of Fiedler Vector for Spectral Partitioning. Dashed lines are
less than the median value.

33

3 FILE FORMATS

3.1 THE GENERIC FORMAT

INPUT FILE

Generic File Structure- (FORMATTED)

Record 1 : ncurves ' Integer number of boundary curves
Record 2 : N1 ' Integer number of points in curve 1

Record 3 : x_l y_l l
Record 4 : x_P- y_2

Record 5 : x_3 y_3 i
' Contiguous coordinate pairs of boundary
i curve 1
I

Record NI+2: x_Nl y_Nl
Record NI+3: N2 ' Integer number of points in curve 2
Record NI+4: x_l y_l

Record NI+5: x_2 y_2
Record N1+6: x_3 y_3 i

' Contiguous coordinate pairs of boundary
curve 2

I

Record N1+N2+3: x_N2 y_N2 t

etc

eof

OUTPUT FILE

Generic File Structure: (FORMATTED)

I Number of cells, Number of edges,
n_cells,n_edges,n_b_edges,n_points! Number of boundary edges, Number of points

x_l y_l ' Coordinate pairs for entire grid
x_2 y_2 ' number of pairs = n_points

I

i

X_n_points Y_n_points

e_to_c(l,l) e_to_c(2,1) i Edge to Cell pointers
e_to_c(l,2) e_to_c(2,2) ' number of index pairs = n_edges

I

i

I

i

34

e_to_c(1,n_edges) e_to_c(2,n_edges)!

e to_v(1,1),e_to_v(2,1) ' Edge to Vertex pointers

e_to_v(1,2),e_to_v(2,2) ' numberof indexpairs= n_edges
i

i

i

i

i

e_to_v(1,n_edges),e_to_v(2,n_edges)!
b_e(1) ' Boundary Edge pointers

b_e(2) ! number of index entries = n b_edges
I

I

!

l

l

b_e(n_b edges)
b_bc(1),iduml,idum2

b_bc(2) 0iduml,idum2 ' Boundary Type identifier
' (iduml, idum2 not used)

' number of index trios = n b edges
!

!

!

l

!

b bc (n_b_edges), iduml,idum2

ncurves ' Number of boundary curves-outer curve last

ncpts(1) ' ncpts(1)= starting address curve1

ncpts(2) ! ncpts(2)=startingaddresscurve2
l

l

!

l

l

ncpts(ncurves) ! ncpts(ncurve)=startingaddresslast curve
ncpts(ncurves+l) ! ncpts(ncurves+l)= tota!numberof
eof ' boundarypoints+ 1

3.2 EXAMPLE FORMATS

3.2.1 Case I: Triangulationofa pointcloud

Triangulatea specifiedcloudofpoints.Givena setofpoints,formthetriangulation
ofthepointswithno specificationofboundingcurves(i.e.theouterboundary).For
theDelaunaytriangulation,theresultingouterboundaryformed_om thetriangulation
coincides with the convex hull ofthe point set. No additional points will be added. Local

35

edge swapping is determined either by the the MaxMin or MinMax criteria as selected by
the user.

Input file structure: (FORMATTED)

0 i No boundary curves

N ' Number of points to be triangulated

x_ly_l

x_2y_2

' Coordinate pairs (not contiguous)
i

X_N y_N
eof

3.2.2 Case 2: Constrained triangulation of a point cloud with prespecified

bounding curves

Triangulate a prespecified set of interior sites constrained by prespecified boundary
curve(s). Given the boundary curves, represented by contiguous points, an initial trian-
gulation of the boundary curves is formed. The remaining interior sites are then inserted
and local edge swapping occurs depending on whether a MinMax or MaxMin triangula-
tion is desired. Typically the MinMax triangulation will produce better results for meshes
containing highly stretched cells, see section 2.1.3.2 for further discussion. The option
exists for additional interior points to be inserted after the initial specified points have
been inserted. In the case of additional point insertion, the user may specify either the

largest aspect ratio cell desired or the number of total cells desired. Additional points will
be inserted at the cell circumcenters. Refinement occurs in the cell with the largest aspect

ratio as determined by the dynamic heap structure. A "Poor Man's" Laplacian smoothing
is also available for postprocessing of triangulations.

Input file structure: (FORMATTED)

ncurves ' Number of boundary curves, last curve is the outer boundary

N1 ' Number of points in curve 1

x_l y_l i

x_2 y_2
Coordinate pairs for curve 1

l

X_NI y_Nl i
N2 ' Number of points in curve 2

x_l y_l
x_2 y_2 ' Coordinate pairs for curve 2

I

I

36

X_N2 y_N2 '

!

NL ' Number of points in last curve (outer boundary)

x_l y_l
x_2y_2

I Coordinate pairs for last curve (outer boundary)
!

X_NL y_NL '

NUMINT or 0 ! Number of specified interior points, if 0 then

x_l y_l ' progr_ will self-count

x_2y_2 I
!

' Coordinate pairs for specified interior points.
X_LY_L I
eof

3.2.3 Case 3: Steiner triangulation with prespecified boundary curves

Steiner triangulate the interior/exterior of specified boundary curve(s). In this case,
an initial triangulation is constructed from the boundary curve(s), which are represented
as contiguous points. Steiner points are inserted into the interior of the outer boundary
curve (the last curve read in) and to the exterior of the inner boundary curves. New
cells are generated by refining the cell with the largest aspect ratio, as determined by the
dynamic heap structure. Each new point is placed at the cireumcenter of the cell which
is being refined. The MinMax or MaxMin options may be used to determine if local edge
swapping occurs after a new point is inserted. The user can specify either the maximum
aspect ratio desired or the specific number of cells desired. A "Poor Man's" Laplacian
smoothing is also available for postprocessing of triangulations.

Input file structure: (FORMATTED)

ncurves ' Number of boundary curves, last curve is the outer boundary

N1 ' Number of points in curve 1

x_l y_1

x_2 y_2

' Coordinate pairs for curve I
l

X_NI y_Nl I
N2 t Number of points in curve 2

x_l y_l

x_2 y_2

' Coordinate pairs for curve 2
I

X_N2 y_N2 l

37

NL ' Number of points in last curve (outer boundary)

x_l y_1

x_2 y_2

' Coordinate pairs for last curve (outer boundary)
I

X_NL y_NL '
eof

3.2.4 Case 4: Solution adaptive triangulation

Refine existing triangulations based on solution error measures. In this case, initial
mesh and solution files are required. Steiner points are inserted into ceils in the interior
of the mesh. Cells are chosen for refinement based on a measure of solution error. The
MinMax or MaxMin options may be used to determine what type of local edge swapping
occurs after a point is inserted. The user can specify either the maximum solution error
desired or the specific number of cells generated. Cells are refined until one of the two
criteria is satisfied. After the newly adapted mesh is generated, the code will also output
a new solution file with interpolated values at the new mesh points. Refinement measures
are calculated in the function refine_measure. The user can easily modify this function for
other possible error measures. A "Poor Man's" Laplacian smoothing is also available for
postprocessing of triangulations.

Input file structure: Initial grid (FORMATTED)

i Number of cells, Number of edges,

n_cells,n_edges,n_b_edges,n_points ! Number of boundary edges, Number of points

x 1 y_l ' Coordinate pairs for entire grid

x_2 y_2 ' numberof pairs= n_points
i

i

X_n_pointsY_n_points t
e_to_c(l,l)e_to_c(2,1) ! Edge to Cell pointers
e_to_c(l,2) e_to_c(2,2) ! number of index pairs = n_edges

I

I

I

e_to_c(1,n_edges) e_to_c(2,n_edges) !
e_to_v(1,1),e_to_v(2,i) i Edge to Vertex pointers
e_to_v(l,2),e_to_v(2,2) I number of index pairs = n_edges

I

I

I

I

e_to_v(1,n_edges),e_to_v(2,n_edges)!

38

b_e(1) i Boundary Edge pointers

b_e(2) ! number of index entries = n_b_edges
!
I

I

t

b_e(n_b_edges)

b_bc(1),iduml,idum2

b_bc(2),iduml,idum2 ! Boundary Type identifier

' (iduml, idum2 not used)

' number of index trios = n_b_edges
I

I

I

b_bc(n_b_edges),iduml,idum2

ncurves _ Number of boundary curves-outer curve last

ncpts(1) ' ncpts(1)= starting address curvel

ncpts(2) ' ncpts(2)=startingaddresscurve2
i

I

I

i

ncpts(ncurves) ! ncpts(ncurve)= starting address last curve
ncpts(ncurves+l) ! ncpts(ncurves+l)= total number of

eof i boundary points + 1

Input file structure: Initial solution (UNFORMATTED)

n_points ' Numberof points (sameas n_pointsin grid)
fsmach,alpha,re,time ' FreestreamMach, alpha,Keynoldsnumber,time
((sol(n,j),j=l,num_points),n=l,4)!Solutionvariables
eof

3.2.5 Case 5: Steiner triangulation with graph partitioning

See Case 3 for input file format

39

4 REFERENCES

1. Lawson, C. L.. "Software for C 1 Surface Interpolation", Mathematical Software III,
(Ed., John R. Rice), Academic Press, New York, 1977.

2. Rajan, V. T., "Optimality of the Delaunay Triangulation in R d'', Proceedings of the
7th ACM Symposium on Computational Geometry, 1991, pp. 357-372.

3. Rippa, S., "Minimal Roughness Property of the Delaunay Triangulation", CAGD,
Vol. 7, No. 6., 1990, pp-489-497.

4. Green, P. J. and Sibson, R., "Computing the Dirichlet Tesselation in the Plane", The
Computer Journal, Vol. 21, No. 2, 1977, pp. 168--173.

5. Babu_ka, I., and Aziz, A. K., "On the Angle Condition in the Finite Element Method",
SIAM J. Numer. Anal., Vol. 13, No. 2, 1976.

6. Holmes, G. and Snyder, D., "The Generation of Unstructured Triangular Meshes
using Delaunay Triangulation," in Numerical Grid Generation in CFD, pp. 643-652,
Pineridge Press, 1988.

7. Warren, G., Anderson, W.K., Thomas, J.L., and Krist, S.L.,"Grid Convergence for
Adaptive Methods,", AIAA paper 91-1592-CP, Honolulu, Hawaii, June 24-27,1991.

8. Anderson, W.K.,"A Grid Generation and Flow Solution Method for the Euler Equa-
tions on Unstructured Grids," NASA Langley Research Center, USA, unpublished
manuscript, 1992.

9. Venkatakrishnan, V., Simon, H.D., Barth, T.J.. "A MIMD Implementation of a Par-
allel Euler Solver for Unstructured Grids", NASA Ames R.C.. Tech. Report RNR-9!-
024, 1991.

10. Simon, H.D., "Partitioning of Unstructured Problems for Parallel Processing," NASA
Ames R.C.. Tech. Report RNR-91-008, 1991.

40

FormApproved
REPORTDOCUMENTATIONPAGE OMBNo07040188

Publicrepo,_;_,gburden for thineollectlorl of information is estimated to average 1 hour perresporme. Includingthe Ume for reviewing lllltructlona, searching existingdata sources,
gatheringand maJnt_Inlngthe data needed, and completing and reviewing the collectionof infornmtion. Send oomments tng_ding thls burden eslJmata or =myother aspect of this
collectionof information, Includingsuggestions for reducing this burden, to Wmlhlngton Hegdquartarl Sef',dcell,Directorate for Information Operationa and Reports, 1215 Jefferson
Davis Highway,Suite 1204. Arlington, VA 222024302, and to the Office of Management and Budget, Papenvork ReductionProject (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 1994 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

IncrementalTriangulationvia EdgeSwappingandLocalOptimization

6. AUTHOR(S) 505-5950

N. Lyn Wiltberger

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

AmesResearchCenter
MoffettField,CA 94035-1000 A-92196

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NationalAeronauticsandSpaceAdministration
Washington,DC 20546-0001 NASATM-103979

11. SUPPLEMENTARY NOTES

Pointof Contact:N.LynWiltberger,AmesResearchCenter,MS202A-2,MoffettField,CA94035-1000;
(415) 604-4474

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified m Unlimited
Subject Category 34

13. ABSTRACT (Maximum 200 words)

Thisdocumentis intendedtoserveas aninstallation,usage,andbasictheoryguideforthetwo-dimensionaltriangulationsoftware
"HARLEY"writtenfortheSiliconGraphicsIRISworkstation.Thiscodeconsistsofan incrementaltriangulationalgorithmbasedonpoint
insertionandlocaledgeswapping.Usingthisbasicstrategy,severaltypesof triangulationscanbeproduceddependingonuserselected
options.Forexample,localedgeswappingcriteriacanbechosenwhichminimizesthemaximuminteriorangle(aMinMaxtriangulation),
orwhichmaximizestheminimuminteriorangle(aMaxMinorDelaunaytriangulation).ItshouldbenotedthattheMinMaxtriangulation
isgenerallyonlylocallyoptimal(notgloballyoptimal)inthismeasure.TheMaxMintriangulation,however,isbothlocallyandglobally
optimal.Inaddition,Steinertriangulationscanbeconstructedbyinsertingnewsitesat trianglecircumcentersfollowedbyedgeswapping
basedon theMaxMincriteria.Incrementalinsertionof sitesalsoprovidesflexibilityinchoosingcell refinementcriteria.Forinstance,
bychoosingarefinementmeasurebasedonsolutionerror,thecodecanbe utilizedforsolutionadaptivegridgeneration.Adynamicheap
structurehasbeenimplementedinthecodeso thatoncearefinementmeasureis specified(i.e.,maximumaspectratioorsomemeasure
ofasolutiongradientforthesolutionadaptivegridgeneration)thecellwiththelargestvalueof thismeasureiscontinuallyremovedfrom
thetopoftheheapandrefined.Theheaprefinementstrategyallowstheusertospecifyeitherthenumberofcellsdesiredorrefinethemesh
untilall cell refinementmeasuressatisfya userspecifiedtolerancelevel.Sincethedynamicheapstructureis constantlyupdated,the
algorithmalwaysrefinestheparticularcellinthemeshwiththelargestrefinementcriteriavalue.Thecodeallowstheuserto:(1)triangulate
acloudof prespecifiedpoints(sites),(2) triangulatea setof prespecifiedinteriorpointsconstrainedbyprespecifiedboundarycurve(s),
O)Steinertriangulatetheinterior/exteriorof prespecifledboundarycurve(s),(4) refineexistingtriangulationsbasedonsolutionerror
measures,and(5) partitionmeshesbasedon theCuthilI-McKee,Spectral,andCoordinatebisectionstrategies.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Unstructuredgridgeneration,Delaunaytriangulation 43
16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN7540-01-280-5500 StandardForm298(Rov.2-89)
Prescribed by ANSI Std. Z30-18
298-102

NAS,

L

3 1176 01408 7242

